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Abstract

Measurements of viscosity and dielectric relaxation were carried out using several solutions of cellulose trinitrate polymer in isophorone in
the dilute and the semidilute regime. In each case, the renormalization group theory was applied to the data using the De Gennes’s blobs
model for connecting dynamic and conformational quantities. There was adequate agreement between the experimental results and the
theoretical predictions to show universal behavior. The values ofb were independent of both molecular weight and polymer concentration
and could be used to describe a variety of dynamic properties. These findings suggest that only one scaling variable is necessary for such
purposes.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Polymers; Dielectric relaxation; Viscosity

1. Introduction

Linear polymers in good solvents exhibit universal beha-
vior over the entire range from the dilute to the semidilute
regime [1,2]. At both extremes, limiting power laws that can
be derived from scaling arguments apply [3]. However, in
the transition zone, the universal relationships take on a
more complicated form, and powerful renormalization tech-
niques become necessary to derive limiting power laws
from a microscopic model of the system.

The conformational and thermodynamic properties of
linear polymers in solution are reasonably well understood
[4]. It is accepted that the progression towards a semidilute
regime implies the screening of excluded volume interac-
tions which arise when the polymer chains entangle. In
contrast, as a consequence of the screening of hydrody-
namic interactions, a description of the dynamic properties
is more difficult. Although Shiwa et al. [5–7] developed a
renormalization group procedure designed specifically to
address viscosity and relaxation times, the problem is not
yet fully understood, especially in the transition zone.

In this paper we present experimental data obtained from
polymers in solution showing Newtonian viscosity and
dielectric relaxation times throughout the dilute-to-semidilute

crossover. We analyzed our results using the renormalization
group scheme developed by Scha¨fer [8,9], which enabled us
to compute both the osmotic pressure and the gyration radius.
In order to compare the experimental results with theoretical
predictions, it was necessary to establish relationships
between the conformational and dynamic properties. We
made this connection using the scale arguments from De
Gennes’s blobs model.

Elsewhere, we used the same scheme to describe both the
thermodynamic and rheological properties in binary and
ternary solutions (for the development of Scha¨fer’s theory
to ternary solutions, see Refs. [10–14]), thereby obtaining a
unified picture for the description of all of these systems.

2. Theoretical background

It has been well established experimentally that in the
range from a dilute to a semidilute regime, the macroscopic
properties of polymer solutions are universal functions of an
overlap parameter,c/cp, where c is the concentration of
polymer andcp is a critical concentration at which the poly-
mer coils begin to overlap [15,16] and is defined as

cp � 3M

4pS3
G;0NA

; �1�

whereM is the molar mass of the solute,NA is Avogadro’s
number, andSG,0 is the gyration radius of an ideal chain.
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Schäfer [8,9] has developed a protocol that applies the
renormalization group theory to the description of the
universal conformational and thermodynamic properties of
polymer solutions. This theory provides for unified treat-
ment of the temperature and concentration crossover of
the excluded volume interactions and thus presents a single
computational scheme for all accessible physical quantities
covering a full universal regime. The system was described
using the well-known Gaussian model with excluded
volume interactions. The polymer chain was characterized
by a microscopic lengthl and by a quantitym ,1 which
represents the strength of the two-body interaction in the
cluster expansion. The solution was characterized by the
number-concentration of polymer chains (cp), a number-
averaged chain length (N) and a chain length distribution
(P(n)).

The renormalization group procedure allows one to
obtain the changes inm andN that occur with changes in
scale asl! l/l . In the scheme developed by Scha¨fer, who
used a normalized parameterf instead ofm , the value off
goes from 0, in theQ-state, to 1 at the excluded volume
limit.

The screening of excluded volume interactions takes into
account the fact that the dilatation ofl must be carried out
until it essentially coincides with the correlation lengthj
(note thatj approaches toRg in the infinite dilute limit). As
j depends on both the molecular weight and the concentra-
tion, this condition tends to fixl (and introduces a new
variable (w) describing the concentration crossover. Here,
w goes from 0 at the dilute limit to 1 at the semidilute limit.

Thus, the unrenormalized variablescl (� cpN) andN can
be mapped to the renormalized scaling field variables,w and
f. In the mapping procedure, the microscopic characteristics
are absorbed into two non-universal scale functions,sN and
sl. Once the values of these functions are fixed, thecl andN
dependence becomes universal, and all scaling functions
can be expressed in terms ofw and f. A crossover diagram
[9] can then be constructed plotting a given quantity as
function of w and f. In such a diagram, the experimental
data are plotted so that variation of the property of interest
with cl andN is indicated. In particular, if one starts from a
dilute solution (w� 1) in the excluded volume regime
( f� 1) and increases the concentration (cl), a double cross-
over can be observed: there is an initial concentration tran-
sition (w� 1 to w� 0) in the excluded volume regime
( f� 1) that is followed by a temperature crossover in the
semidilute regime. This path is followed by the experimen-
tal results which start atw� 1 andf� 1 and almost reach
the semidilute, excluded volume limit (w� 0, f� 1), and
then go sharply tof� 0 in the semidilute regime (w� 0). As
a consequence, the equations valid atf� 1 could be used
over the entire concentration range covered by the present
experiments (see details in Ref. [9]).

Within this limit, sN and sl are combined into a single
quantityB� sls

n
N, wheren (�0.588) is the excluded volume

critical exponent. When considering the ratio,S/S0, whereS0

is the radius of gyration at an infinite dilution,B is cancelled
and the following is obtained [9]

S2

S2
0

� 1:30w21 w

9
8

1
1
4

w1=2

�1 1 w1=2�

26664
37775

2n

�1 1 D�w��
�1 1 D�1�� ; �2�

where D(w) is a function of polydispersity for mono-
disperse systems and is given by [9]

D�w� � 0:0622 0:240w1=2 2 0:008w 1 0:265w3=2

2 0:142w2
; �3i�

while for exponential chain length distribution2

D�w� � 0:0621 0:173w 2 0:141w2
; 0 # w # 1: �3ii�

Instead ofw, which is not a measurable quantity, it is
useful to express macroscopic properties in terms of the
overlap parameter,s. Using the framework of Scha¨fer’s
theory, forf� 1, s can be written [9]

s� 0:5�1 2 w�w123n 9
8

1
1
4

w1=2

�1 1 w1=2

" #3n

�4�

and can be expressed in terms of experimental variables as

s� b3cM3n21
n ; �5�

where c is the polymer concentration in g/ml andMn is
the number-averaged molecular weight. Here,b is a
non-universal quantity (b / B) that cannot be determined
theoretically and must be obtained by adjusting the experi-
mental data to the theoretical expressions. We note,
however, thatb will be independent of both molecular
weight and concentration. Further, we note that Eqs. (2)–
(4) define the radius of gyration as a universal function ofs.

We also used these results to interpret the dynamic
properties of polymers in solution. As shown in the appen-
dix, we used the De Gennes’s reptation theory to obtain the
following relationship between the gyration radius and the
viscosity (Eq. (6)) and the relaxation time (Eq. (7))

hsp

�h�c �
S2

S2
0

 ! 3n24
2n21

; �6�

t

t0
� S2

S2
0

 ! 3n23
2n21

; �7�

whereh sp and [h ] are the specific and intrinsic viscosity,
respectively,t is the longest relaxation time, andt0 is its
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1 The quantitym corresponds tob of Ref. [9]. We have changed the
symbol in order to avoid confusion with Eq. (5).

2 This expression ofD(w) was obtained from Fig. 6 in [9] adjusting a
polynomial function.



value at infinite dilution. These equations hold at the same
levels as the scaling theory; their use avoids introduction of
additional adjustable quantities; and known limiting beha-
vior of both diluteand semidilutesolutionsaresatisfied (see
Eqs. (A13)–(A17)).

Although this approach does not constitute a unified
renormalization group description of the excluded volume
or thehydrodynamic and entanglement effects, it hasadvan-
tages over other theoretical treatments: from the point of
view of experimentation, the existence of only one adjust-
able parameter, and the inclusion of the polydispersity
effects are advantageous. In contrast, this theory treats the
double crossover in concentration and temperature in a
unified form.

3. Experimental section

3.1. Materials

Samples of cellulose trinitrate polymer containing
13.9^ 0.5% nitrogen were prepared from native cotton as
previously described [1,17]. The samples were character-
ized using size-exclusion chromatography and intrinsic
viscometry of tetrahydrofuran and acetonesolutions. Values
of Mw were calculated using the following relations [18]:
[h ] � 4.46 (DPw)0.76 and Mw� DPwM0, where [h ] is the
intrinsic viscosity, M0� 294 and DPw is the degree of poly-
merization. Thenumber-averaged molecular weight (Mn) of
two samples was determined from membrane osmometry
of isophorone (3,5,5-trimethylcyclohexenone) solutions

prepared by shaking the solvent distillate for 48 h at 308C.
Table 1 shows the characteristics of the samples used.

3.2. Measurements

The intrinsic viscosity [h ] was determined using
Schultz–Blaschke’s equation [19]

hsp

c
� �h�1 �h�kSBhsp; �8�

where c is the solution concentration, h sp is the specific
viscosity, and kSB is Schultz–Blaschke’s constant. Flow
times were measured using an Ostwald viscometer. The
flow time of the pure solvent was always higher than
150 s; consequently, kinetic energy corrections could be
neglected [19]. The Newtonian viscosity was obtained
with a rotoviscometer Haake RV2.

Dielectric measurements were made over a frequency
range between 5 Hz and 100 KHz using a Hewlett Packard
LF4192A impedance bridge. In order to eliminate the
effects of polarization, a cell with a variable gap between
electrodeswasused. Weassumed thefollowing relationship
[20]:

1
C
� 1

Cp
1

K
1

d; �9�

where C is the measured capacitance, Cp, the polarized
capacitance, K, the cell constant, 1 , the dielectric permitiv-
ity, and d, the distance between the electrodes. We
measured capacitance as a function of frequency in the
pure solvent and in the solutions using five different
distances between electrodes. Al l measurements were
made at 308C. Because we were interested in the value of
the permitivity relative to the solvent, actual values of K
could be obtained without calibration.

4. Results

4.1. Analysis of dipole moment

Molecules belonging to Type A according to Stock-
mayer’s classification [21,22] have a dipole component
parallel to the contour of the backbone chain. Therefore,
relaxation behavior of m (should be identical to that ofrn.
Themost important consequenceof thiscircumstanceisthat
the relaxation time is dependent upon the molecular weight
of the polymer. Molecules having dipole moments perpen-
dicular to the backbone (Types B and C), by contrast, exhi-
bit relaxation times independent of molecular weight.

Cellulose ethersand esters are known to beType A poly-
mers [23]. Fig. 1 shows the repeat unit of cellobiose, which
consists of two glucose rings connected by an oxygen
bridge. The axis of the dipole moment should be along the
C1–C4 line. Lateral groups and cyclic oxygen are opposing
(b configuration), and their perpendicular dipole moments
are therefore cancelled. The parallel dipole moment is due
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Table 1
Characteristics of the samples used in this work

Sample Mh /
(104 g mol21)a

Mn/
(104 g mol21)

MhMn [h ]/
(cm3 g)

I-2 30.7 14.3b 2.14 90^ 29
I-3 96 57.5c 1.67 1839^ 22
I-8 42 21.7b 1.94 1111^ 5
I-9 45 25.0c 1.80 1088^ 24
I-10 76 44.7c 1.71 1778^ 30
I-12 45 25.1c 1.80 915^ 44
I-16 35.3 18.8c 1.88 911^ 21

a Determined by intrinsic viscometry of solutions in acetone.
b Determined by membraneosmometry in isophoronesolutions[10–13].
c Determined by size exclusion chromatography.

Fig. 1. Schematic diagram of the repeating unit of cellobiose.



to the oxygen atoms joining the glucose rings, and the poly-
mer chain can be considered to be formed by inverse Type A
sequences.

We computed the dipole moment of the cellobiose using
the AM1 semiempirical method running in PC Spartan-Plus
(Wave function Inc., Irvine, CA), and found that it indeed
lies in the direction of the line connecting carbon atoms
C1–C4 of the glycosidic linkage, which confirms that this
is a Type A polymer. Nonetheless, Type B and Type C
contributions would be expected from the partial substitu-
tion of OH groups, and dipolar relaxation of these modes
should be found at high frequencies.

We also note that a Type B dipole, ascribable to the
overall rotation of the polymer molecule, may be
evident at low frequency relaxation times. At infinite
dilution, Type A and Type B relaxation modes would
both depend on molecular weight, and consequently, we
would be unable to distinguish one from the other. In
contrast, we expect that as the polymer concentration
increases, the Type B relaxation time grows more
rapidly, but would be below the lowest frequency
limit. In any case, as the absolute value of the Type
B dipole is much lower than that of the type A one, the
contribution made by the Type B dipole to the
relaxation process will by negligible.

4.2. Determination of relaxation times

Relaxation times were calculated by fitting Debye’s curve
to the experimental data

1 2 1∞
10 2 1∞

� 1
1 1 v2t2 ; �10�

where10,1∞, andt (the static and infinite permittivity and
the relaxation time, respectively) were taken as adjustable
parameters.

Fig. 2 shows some typical plots of1r �� 1soln=1solv�
expressed as a function of the frequency (v ). Although
electrode polarization caused the data to be somewhat
scattered at the initial part of the curve, the results appear
to be reliable. Relaxation times at infinite dilution were
determined by semilogarithmic extrapolation to back zero
concentration (Fig. 3).

4.3. Evaluation ofb

Fig. 4 showshsp=�c�h�� expressed as a function of the
overlap parameter,s�� b3cM3n2l

n �. The continuous line
indicates the theoretical prediction calculated from Eqs.
(2)–(4) and (6). The parameter,b ( was fitted to the experi-
mental data for each molecular weight (Table 2). These
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Fig. 2. Representative results depicting dielectric relaxation. Open circles are the experimental points, while the line is the fitted curve of a Debye type
relaxation.



values were then used to translate thet /t0 data (Fig. 5). The
line depicted in Fig. 5 represents the theoretical prediction
based on Eqs. (2)–(7).

5. Discussion and conclusions

We applied the renormalization group theory to data
describing the viscosity and the relaxation times of polymer
solutions in the dilute-to-semidilute crossover; this entailed

using De Gennes’s blobs model to connect the dynamic and
conformational quantities. We found adequate agreement
between the experimental results and theoretical predictions
showing universal behavior. The values ofb were indepen-
dent of molecular weight and polymer concentration, and
they could be used to describe a variety of dynamic proper-
ties, suggesting that only one scaling variable is necessary
for such purpose.

Throughout this work, we used the naive reptation model.
Currently, the existence of fluctuations in chain contour
effects is accepted [24,25] for melted polymers. In order
to take these effects into account, it was necessary to
consider the existence of two relaxation times, each of
which was dependent on the entanglement density even in
semidilute solutions. This introduces a slight ambiguity into
our analysis; fortunately however, the degree of overlap was
small and essentially involved only dilute solution, for
which the renormalization theory applies.

Finally, we note that our analysis revealed that the elastic
modulus could also be studied using the scheme presented
here (see the appendix). Thus, we should be able to obtain
measurements of viscosity, relaxation times and elastic
modulus using the same system.
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Appendix A

According to the reptation model, as a macromolecular
chain diffuses, it is continuously vacating a tube-like region
within the solvent and occupying a new one. The dynamics
of this process was discussed by de Gennes to determine the
low-frequency properties of entangled polymer using two
concentration-dependent parameters,a andNe (the distance
and the number of monomers between entanglements,
respectively). Using this method, we derived the known
results for the viscosity of solutions in good solvents.
Consider a chain consisting of a series of segments having
a size proportional toa. The total number of segments is
proportional toN/Ne, and if the hydrodynamic interactions
in the interior of the segments are unscreened, the chain
friction coefficient fchain will vary according to Stokes and
Einstein

fchain/ 6 phsa
N
Ne

� �
/ kT

Dtube
; �A1�

whereN is the number of monomers in the chain andh s is
the solvent viscosity. To disengage from a given tube, the
molecule must diffuse a distance on the order of the chain
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Fig. 3. Semilogarithmic plot showing relaxation time expressed as a func-
tion of polymer concentration. The data are extrapolated back to zero
concentration.

Fig. 4. Normalized viscosity function expressed as an overlap parameter.
The value ofb corresponds to those indicated in Table 2. The line is the
theoretical prediction.W Sample I-2;A Sample I-3;D Sample I-8;f
Sample I-10;S Sample I-12.



lengthaN/Ne. Therefore, according to Einstein, the longest
relaxation timet r is now

tr / 1
2

a
N
Ne

� �2

Dtube
�A2�

The polymer contribution to the solution viscosity,
h 2 h s, is given by Maxwell’s relation

h 2 hs/ trG; �A3�

whereG is the relaxation strength associated witht r, andh
is the solution viscosity. The modulusG is proportional to
the number-concentration of entanglement

G/ c
Ne

; �A4�

where c is the weight-polymer concentration. From Eqs.
(A1)–(A4) it is possible to obtain the reduced viscosity as

follows:

hsp

c
/

Na
Ne

� �3

Ne
�A5�

To define the viscosity in terms of molecular parameters,
it is argued that the distancea is proportional to the correla-
tion length. In other words, the aforementioned chain
segments correspond to blobs in the static description of
semidilute solutions. Accordingly, the above-introduced
parameters,N, Ne and a are interrelated in the following
way:

a/ Nn
e; S0 / Nn; S/ a

N
Ne

� �1=2

; �A6�

whereS is the radius of gyration of the chain,S0 its value in
very dilute solution andn (�0.588) the excluded volume
exponent. By combining Eqs. (A5) and (A6) we obtain

hsp

c
� S3

0

N
S2

S2
0

 ! 3n24
2n21

�A7�

For very dilute solution, Zimm’s formulation for the intrin-
sic viscosity is obtained

�h� / S3
0

N
�A8�

Eqs. (A7) and (A8) lead to

hsp

c�h� �
S2

S2
0

 ! 3n24
2n21

�A9�

Further, with Eqs. (A1), (A2) and (A6) we can obtain

tr / a3 N
Ne

� �3 hs

kT
/ S2

S2
0

 ! 3n24
2n21

S3
0
hs

kT
�A10�

Also for very dilute solutions (c! 0) we have

t0 / hs

kT
S3

0 �A11�

Finally, Eqs. (A10) and (A11) lead to

t

t0
� S2

S2
0

 ! 3n24
2 n21

�A12�

We could analyze limiting behavior. For dilute solutions
(w! 1; s! 0); therefore, Eqs. (6) and (A11) can be written

hsp=�c�h�� � 1 1 2�4 2 3n�s=�1;25�3n; �A13�
which is Huggins’s equation [21]:

hsp

c�h� � �h�1 KH�h�2c; �A14�

whereKH is Huggin’s constant. Combining Eqs. (A13) and
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Fig. 5. Reduction of relaxation time as a function of the overlap parameter
using the values ofb also used in Fig. 4.W Sample I-16;A Sample I-9;
D Sample I-12.

Table 2
Values of b corresponding to each sample computed from viscosity
measurements

Sample b

I-2 0.27
I-3 0.27
I-8 0.27
I-10 0.29
I-12 0.27



(A14) with the definition ofs we obtain

KH � 2�4 2 3n�
1:253n b3 M3n21

n

�h� �A15�

In the semidilute limit (w! 0; s! ), Eqs. (2), (3) and (5)
are reduced to

hsp�c�h�� / w�3n24� / s��3n24�=�123n�� �A16�
and De Gennes’ limiting relation is obtained:

hsp! M3c3=�3n21��s! 0� �A17�
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