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Dynamics properties of polymer solutions (I). Dilute—semidilute transition
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Abstract

Measurements of viscosity and dielectric relaxation were carried out using several solutions of cellulose trinitrate polymer in isophorone in
the dilute and the semidilute regime. In each case, the renormalization group theory was applied to the data using the De Gennes'’s blobs
model for connecting dynamic and conformational quantities. There was adequate agreement between the experimental results and the
theoretical predictions to show universal behavior. The valugsweére independent of both molecular weight and polymer concentration
and could be used to describe a variety of dynamic properties. These findings suggest that only one scaling variable is necessary for such
purposes© 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction crossover. We analyzed our results using the renormalization
group scheme developed by Sfdrd8,9], which enabled us

Linear polymers in good solvents exhibit universal beha- to compute both the osmotic pressure and the gyration radius.

vior over the entire range from the dilute to the semidilute In order to compare the experimental results with theoretical

regime [1,2]. At both extremes, limiting power laws that can predictions, it was necessary to establish relationships

be derived from scaling arguments apply [3]. However, in between the conformational and dynamic properties. We

the transition zone, the universal relationships take on amade this connection using the scale arguments from De

more complicated form, and powerful renormalization tech- Gennes’s blobs model.

nigues become necessary to derive limiting power laws Elsewhere, we used the same scheme to describe both the

from a microscopic model of the system. thermodynamic and rheological properties in binary and
The conformational and thermodynamic properties of ternary solutions (for the development of Sfdras theory

linear polymers in solution are reasonably well understood to ternary solutions, see Refs. [L0—14]), thereby obtaining a

[4]. It is accepted that the progression towards a semidilute unified picture for the description of all of these systems.

regime implies the screening of excluded volume interac-

tions which arise when the polymer chains entangle. In ]

contrast, as a consequence of the screening of hydrody-2- Theoretical background

namic interactions, a description of the dynamic properties

is more difficult. Although Shiwa et al. [5—7] developed a It has been _weII establishe_d exper_imentally that in th?
renormalization group procedure designed specifically to range from a dilute to a semidilute regime, the macroscopic

address viscosity and relaxation times, the problem is not ProPerties of polymer solutions are universal functions of an
yet fully understood, especially in the transition zone. overlap parameterc/c’, wherec is the concentration of

In this paper we present experimental data obtained from polyme_r and:*_ Is a critical concentration_ at WhiCh the poly-
polymers in solution showing Newtonian viscosity and mer coils begin to overlap [15,16] and is defined as

dielectric relaxation times throughout the dilute-to-semidilute  , 3M 1
- ¢ T Ny @
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E-mail addressgrigera@iflysibl.unlp.edu.ar (J.R. Grigera) number, ands; ; is the gyration radius of an ideal chain.

0032-3861/00/$ - see front matt€r 1999 Elsevier Science Ltd. All rights reserved.
Pll: S0032-3861(99)00197-4



726 I.M. lrurzun et al. / Polymer 41 (2000) 725-731

Schder [8,9] has developed a protocol that applies the  Within this limit, sy and 5§ are combined into a single
renormalization group theory to the description of the quantityB = 5\, wherev(=0.588) is the excluded volume
universal conformational and thermodynamic properties of critical exponent. When considering the raify, whereS,
polymer solutions. This theory provides for unified treat- is the radius of gyration at an infinite dilutioB,is cancelled
ment of the temperature and concentration crossover ofand the following is obtained [9]

the excluded volume interactions and thus presents a single 2

computational scheme for all accessible physical quantities

covering a full universal regime. The system was described i = 130w} w [1+ Aw)] )
using the well-known Gaussian model with excluded 9.1 wh? (1+AQ)]
volume interactions. The polymer chain was characterized 8 4(1+w?

by a microscopic length and by a quantityu,’ which
represents the strength of the two-body interaction in the
cluster expansion. The solution was characterized by the
number-concentration of polymer chaing)( a number- A(w) = 0.062 — 0.240n"? — 0.008w + 0.265n1>2
averaged chain lengtiNf and a chain length distribution
(P()). — 0.1420, (3i)
The renormalization group procedure allows one to
obtain the changes ip and N that occur with changes in
scale ag — I/A. In the scheme developed by Stdra who A(W) = 0.062+ 0173w — 0.142 0 =w = 1. (3ii)
used a normalized parameteinstead ofu, the value off
goes from 0, in thed-state, to 1 at the excluded volume  Instead ofw, which is not a measurable quantity, it is
limit. useful to express macroscopic properties in terms of the
The screening of excluded volume interactions takes into Overlap parameters. Using the framework of Scher's
account the fact that the dilatation bfnust be carried out  theory, forf=1, s can be written [9]
until it essentially coincides with the correlation length 9 1 w2 3v
(note that¢ approaches &, in the infinite dilute limit). As s=0.5(1— W)Wl‘3V[ S ]
¢ depends on both the molecular weight and the concentra- 8 4@1+w
tion, this condition tends to fix (and introduces a new
variable (v) describing the concentration crossover. Here,
w goes from O at the dilute limit to 1 at the semidilute limit. s= BcM3" %, (5)
Thus, the unrenormalized variablesg= ¢,N) andN can
be mapped to the renormalized scaling field variablesnd
f. In the mapping procedure, the microscopic characteristics
are absorbed into two non-universal scale functiggsnd
5. Once the values of these functions are fixed,gladN
dependence becomes universal, and all scaling function
can be expressed in termswfandf. A crossover diagram
[9] can then be constructed plotting a given quantity as
function of w andf. In such a diagram, the experimental
data are plotted so that variation of the property of interest
with ¢, andN is indicated. In particular, if one starts from a
dilute solution w=1) in the excluded volume regime
(f=1) and increases the concentratigy), @ double cross-
over can be observed: there is an initial concentration tran-
sition Ww=1 to w=0) in the excluded volume regime (82)35—‘11

where A(w) is a function of polydispersity for mono-
disperse systems and is given by [9]

while for exponential chain length distributibn

4

and can be expressed in terms of experimental variables as

where ¢ is the polymer concentration in g/ml ard, is
the number-averaged molecular weight. Heg,is a
non-universal quantityd oc B) that cannot be determined
theoretically and must be obtained by adjusting the experi-
mental data to the theoretical expressions. We note,
S'however, thatB will be independent of both molecular
weight and concentration. Further, we note that Egs. (2)—
(4) define the radius of gyration as a universal functios. of
We also used these results to interpret the dynamic
properties of polymers in solution. As shown in the appen-
dix, we used the De Gennes’s reptation theory to obtain the
following relationship between the gyration radius and the
viscosity (Eg. (6)) and the relaxation time (Eqg. (7))

(f=1) that is followed by a temperature crossover in the Mo _ [ = (6)
semidilute regime. This path is followed by the experimen- [nlc S
tal results which start av =1 andf = 1 and almost reach
the semidilute, excluded volume limitv(= 0, f= 1), and . & 3-8
then go sharply tb= 0 in the semidilute regimen(= 0). As — = (—) , @)
a consequence, the equations valid at1 could be used 7o $
over the entire concen.tra'tlon range covered by the preseng,vhere”,Sp and [] are the specific and intrinsic viscosity,
experiments (see details in Ref. [9]). respectively,r is the longest relaxation time, ang is its
! The quantityu corresponds t@ of Ref. [9]. We have changed the 2 This expression ofA\(w) was obtained from Fig. 6 in [9] adjusting a

symbol in order to avoid confusion with Eq. (5). polynomial function.
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Table 1
Characteristis of the sample usel in this work
Sample M,/ M/ MM, [n)/
(10*gmol™)®  (10*gmol™?Y (cm®g)
1-2 30.7 14.9 214 90 + 29
1-3 96 57.5 1.67 1830 + 22
1-8 42 21.7 1.94 11m=+5
1-9 45 25.0 1.80 1083+ 24
1-10 76 44.7 171 1778 + 30
I-12 45 25.1° 1.80 915+ 44
1-16 35.3 18.8 1.88 91 +21

2 Determingl by intrinsic viscomety of solutiors in acetone.
P Determinel by membrae osmomety in isophorore solutiors [10-13].
¢ Determingl by size exclusion chromatography.

value a infinite dilution. Thes equatons hold at the sane
levelk as the scding theory; their use avads introduction of
additiond adjustabk quantites; and known limiting beha-
vior of both dilute and semidilute solutiors are satisfial (see
Eqgs (A13)—(A17)).

Although this approab does not constitue a unified
renomalization groyp descrption of the excludal volume
or the hydrodynamic and entanglenert effects it hasadvan-
tages over othe theoretcal treatnents from the point of
view of experimemation the existene of only one adjust-
able paraneter, ard the inclusion of the polydispersity
effects are advantagous In cortrast this theory treas the
doubke crossove in conentration and tempeature in a
unified form.

3. Experimental secion
3.1 Materials

Sampls of cdlulose ftrinitrate polymea contahing
139 = 0.5% nitrogen were prepare from native cottan as
previousy describe [1,17]. The sampks were chaacter-
ized using sizeexclusion chromdogrgphy and intrinsic
viscametry of tetrahydrofuran and acetorm solutions Values
of M,, were calculaed using the following relaions [18]:
[n] =4.46 (DR)®™ ard M,,= DP,M,, wher [7] is the
intrinsic viscosity, My = 294 and DP,, is the degres of poly-
merizdion. The numberaveragd maecula weight (M,)) of
two sample was determine from membrae osmometry
of isophoro® (3,5,5-trime¢hylcydohexaoné soluions

CH,

CH,O

Fig. 1. Schemat diagran of the repeatiy unit of cellobiose.

prepred by shakirg the solven distillate for 48 h at 30°C.
Table 1 shows the characterisics of the sampés used.

3.2 Measurements

The intrinsic viscosiy [n] was determined using
Schulz—Blaschke’s equaton [19]

% — [n] + [nlKsgTsp ®

whete c is the solution concentréion, 7g, is the spedfic
viscosity, and Ksg is Schulz—Blaschke's constah Flow
times were measurel using an Ostwabl viscometer The
flow time of the pure solvert was always highe than
150's; consquently, kinetic enegy correctons coud be
nedected [19]. The Newtonian viscosiy was obtaired
with arotoviscometr Haale RV2.

Dielectric measurments were made over a frequency
range betwea 5 Hz ard 100 KHz using a Hewlett Packad
LF4192A impedance bridge In orde to eliminake the
effects of polarization a cel with a variabke ggp between
electrodes was used We assumd the following relaionship
[20]:

1 1 K

c- g +—d 9)

where C is the measued capacitane, C,, the polarized
capaitance K, the cell constam, ¢, the dielectric permitiv-
ity, and d, the distarce betwesn the electrods. We

measured capacitane as a function of frequerty in the
pure solvert ard in the solutiors using five different
distarces between electrods. All measwemens were
made at 30°C. Becausg we were interesed in the value of

the pernitivity relative to the solvent actua values of K

coud be obtained without calibreion.

4. Results
4.1 Analysis of dipole moment

Molecules belonghg to Type A accading to Stock-
mayer’s classification [21,22 hawe a dipole component
parallel to the cortour of the backbom chain Therefae,
relaxdaion behavio of u (should be identical to that of.
The mod importart consquene of thiscircumstan@isthat
the relaxaton time is depemlert upon the molealar weight
of the polyme. Molecules having dipoe momerts perpen-
dicular to the backione (Types B and C), by cortrast exhi-
bit relaxaton times indepeneént of moleallar weight.

Cellulos ethers ard estes are known to be Type A poly-
mers [23]. Fig. 1 shows the repeat unit of cellobios, which
conssts of two gluco® rings connecéd by an oxygen
bridge The axis of the dipole momen shout be alorg the
C,—C, line. Laterd groups and cydic oxygen are opposing
(B configuration, and their pergendicular dipole momerts
are therefoe canelled. The parallé dipole momert is due
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Fig. 2. Representative results depicting dielectric relaxation. Open circles are the experimental points, while the line is the fitted curveeofypeDeby
relaxation.

to the oxygen atoms joining the glucose rings, and the poly- 4.2. Determination of relaxation times
mer chain can be considered to be formed by inverse Type A
sequences. Relaxatior_l times were calculated by fitting Debye’s curve

We computed the dipole moment of the cellobiose using 0 the experimental data
the AM1 semiempirical method running in PC Spartan-Plus
(Wave function Inc., Irvine, CA), and found that it indeed
lies in the direction of the line connecting carbon atoms
C,—C, of the glycosidic linkage, which confirms that this wheregg,e.., andr (the static and infinite permittivity and
is a Type A polymer. Nonetheless, Type B and Type C the relaxation time, respectively) were taken as adjustable
contributions would be expected from the partial substitu- parameters.
tion of OH groups, and dipolar relaxation of these modes Fig. 2 shows some typical plots of (= &so1/&son)
should be found at high frequencies. expressed as a function of the frequenay).(Although

We also note that a Type B dipole, ascribable to the electrode polarization caused the data to be somewhat
overall rotation of the polymer molecule, may be scattered at the initial part of the curve, the results appear
evident at low frequency relaxation times. At infinite to be reliable. Relaxation times at infinite dilution were
dilution, Type A and Type B relaxation modes would determined by semilogarithmic extrapolation to back zero
both depend on molecular weight, and consequently, we concentration (Fig. 3).
would be unable to distinguish one from the other. In
contrast, we expect that as the polymer concentration 4.3. Evaluation of3
increases, the Type B relaxation time grows more
rapidly, but would be below the lowest frequency Fig. 4 showsnsy/(c[7]) expressed as a function of the
limit. In any case, as the absolute value of the Type overlap parameters(= g°cM:""'). The continuous line
B dipole is much lower than that of the type A one, the indicates the theoretical prediction calculated from Egs.
contribution made by the Type B dipole to the (2)-(4)and (6). The parametes( was fitted to the experi-
relaxation process will by negligible. mental data for each molecular weight (Table 2). These

£~ & 1
€0~ € 1+ w?r?’

(10
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Fig. 3. Semilogarithmic plot showing relaxation time expressed as a func-
tion of polymer concentration. The data are extrapolated back to zero
concentration.

values were then used to translate tm, data (Fig. 5). The
line depicted in Fig. 5 represents the theoretical prediction
based on Egs. (2)—(7).

5. Discussion and conclusions
We applied the renormalization group theory to data

describing the viscosity and the relaxation times of polymer
solutions in the dilute-to-semidilute crossover; this entailed

le+3

le+2

nsp /([M]c)

le+l

(e]

le+0

le-2 le-1 le+0 le+l

s=p3%c MV

Fig. 4. Normalized viscosity function expressed as an overlap parameter.
The value off corresponds to those indicated in Table 2. The line is the
theoretical predictionO Sample 1-2;(0 Sample I-3;A Sample 1-8;V
Sample 1-10;0> Sample 1-12.
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using De Gennes’s blobs model to connect the dynamic and
conformational quantities. We found adequate agreement
between the experimental results and theoretical predictions
showing universal behavior. The values®fvere indepen-
dent of molecular weight and polymer concentration, and
they could be used to describe a variety of dynamic proper-
ties, suggesting that only one scaling variable is necessary
for such purpose.

Throughout this work, we used the naive reptation model.
Currently, the existence of fluctuations in chain contour
effects is accepted [24,25] for melted polymers. In order
to take these effects into account, it was necessary to
consider the existence of two relaxation times, each of
which was dependent on the entanglement density even in
semidilute solutions. This introduces a slight ambiguity into
our analysis; fortunately however, the degree of overlap was
small and essentially involved only dilute solution, for
which the renormalization theory applies.

Finally, we note that our analysis revealed that the elastic
modulus could also be studied using the scheme presented
here (see the appendix). Thus, we should be able to obtain
measurements of viscosity, relaxation times and elastic
modulus using the same system.
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Appendix A

According to the reptation model, as a macromolecular
chain diffuses, it is continuously vacating a tube-like region
within the solvent and occupying a new one. The dynamics
of this process was discussed by de Gennes to determine the
low-frequency properties of entangled polymer using two
concentration-dependent parametarandN, (the distance
and the number of monomers between entanglements,
respectively). Using this method, we derived the known
results for the viscosity of solutions in good solvents.
Consider a chain consisting of a series of segments having
a size proportional t@. The total number of segments is
proportional toN/N,, and if the hydrodynamic interactions
in the interior of the segments are unscreened, the chain
friction coefficientf,qi, Will vary according to Stokes and
Einstein

KT
Dtube ’

N

N)OC

e

fehain o€ 6 T‘"’Isa( (AD)
whereN is the number of monomers in the chain aipgls
the solvent viscosity. To disengage from a given tube, the
molecule must diffuse a distance on the order of the chain
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Table 2
Values of B corresponding to each sample computed from viscosity
measurements

Sample B

I-2 0.27
I-3 0.27
1-8 0.27
I-10 0.29
I-12 0.27

lengthaN/N,. Therefore, according to Einstein, the longest
relaxation timer, is now

N 2
1 (o)

5 (A2)
2 Dtube

T, OC

The polymer contribution to the solution viscosity,
n — 7Ms IS given by Maxwell’s relation
n— s < G, (A3)
whereG is the relaxation strength associated withandn

is the solution viscosity. The modul@ is proportional to
the number-concentration of entanglement

C
G N
*N

e

(A4)

where c is the weight-polymer concentration. From Egs.
(Al1)—(A4) it is possible to obtain the reduced viscosity as

letl

T/t

IIIllIII L Ll

IIIII Il

le-1 le+0

s=plc.Mn>!

L1l
let+l

le+0
le-2
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follows:

(AS)

To define the viscosity in terms of molecular parameters,
it is argued that the distan@as proportional to the correla-
tion length. In other words, the aforementioned chain
segments correspond to blobs in the static description of
semidilute solutions. Accordingly, the above-introduced
parametersN, N, and a are interrelated in the following

way:

N 172
aoc Ng; S o< N, S a(N—> , (AB)
e
whereSis the radius of gyration of the chaif; its value in
very dilute solution andv(=0.588) the excluded volume

exponent. By combining Egs. (A5) and (A6) we obtain

S

c N

&)

For very dilute solution, Zimm'’s formulation for the intrin-
sic viscosity is obtained

(A7)

[] oc % (A8)
Egs. (A7) and (A8) lead to
@\ o1
U N A9
cln] (3%) (A9

Further, with Egs. (A1), (A2) and (A6) we can obtain

3v—4
3 E)BE g 2v—1 E
Tf“a(Ne a<lg) Sa

(A10)
Also for very dilute solutionsd— 0) we have
To o %ﬁ (A11)
Finally, Egs. (A10) and (Al11) lead to
@\t
(= (A12)
70 \.db

We could analyze limiting behavior. For dilute solutions
(w— 1; s— 0); therefore, Egs. (6) and (A11) can be written

Nsf(CIn]) = 1 + 2(4 — 3v)9/(1, 253, (A13)
which is Huggins’s equation [21]:
B — ] + Kylmle, (AL4)

Fig. 5. Reduction of relaxation time as a function of the overlap parameter c[n]

using the values oB also used in Fig. 40 Sample I-16{] Sample I-9;
A Sample |-12.

whereKy is Huggin’s constant. Combining Egs. (A13) and
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(A14) with the definition ofs we obtain
K. 24-30) M3t
H 1.25% [n]

In the semidilute limit v— 0; s— ), Eqgs. (2), (3) and (5)
are reduced to

B (A15)

nep(Clml) oc W9 o JBr=a/(1-3v) (A16)
and De Gennes’ limiting relation is obtained:
ngp— M3c¥® P(s— 0) (A17)
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